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This paper investigates the development of multiresolution-based terrain estimation 

algorithms, focusing on complex three-dimensional urban environments.  The algorithms 

generate functional terrain representations from point cloud data obtained from the 

processing of onboard vision and/or LIDAR sensors.  Two classes of multiresolution 

algorithms are considered in this work.  First, mathematical learning methods are developed 

and implemented to generate adaptive terrain representations in terms of piecewise-constant 

multiresolution basis functions.  These algorithms have been applied in previous work for 

terrain estimation over two-dimensional domains and are extended in this paper for three-

dimensional domains, resulting in terrain representations in terms of multiresolution 

occupancy grids.  The second class of algorithms corresponds to global-orthogonal mapping 

(GLO-Map) algorithms, which have been developed in previous work to generate 

representations over two-dimensional domains in terms of smooth orthogonal functions with 

varying resolution.  Representative terrain mapping examples are provided using simulated 

LIDAR data from a virtual urban environment as well as processed 3-D LIDAR data collected 

from a UAV flying through a representative obstacle environment.    

 

 

I. Introduction 
 

A critical enabling technology for autonomous UAV flight through complex urban environments is the 

ability to map the scene based on sensor data.  An adaptively generated 3-D terrain map would enable an 

autonomous vehicle to plan and update 3-D trajectories around and through diverse features such as trees, 

power lines, buildings, bridges and overhangs, and potentially indoors.  This paper focuses on developing 

multiresolution-based terrain representations suitable for the complex 3-D features that are commonly 

found in urban environments.     

This paper investigates two classes of multiresolution terrain mapping algorithms, with a focus on 

developing implementations that are fast (real-time), recursive (i.e., no need to regenerate the entire terrain 

when data are received), and suitable for 3-D terrain features (i.e., can capture terrain features beyond a 2-

D terrain skin representation).  These algorithms operate on sensed 3-D point cloud data (i.e., a collection 

of 3-D points in an inertial reference frame) that can be obtained from LIDAR sensors, stereo vision 

systems, or structure from motion processing of monocular imagery. Two multiresolution-based 

approaches will be explored and modified for the purposes of generating complex 3-D terrain 

representations: 

 

(1)  Adaptive mathematical learning algorithms [1]:   In previous work [2, 3], these algorithms have been 

implemented in the form of fast, recursive algorithms that provide multiresolution, piecewise-constant 

representations on 2-D domains.  In this paper, the extension of these adaptive learning algorithms to 3-D 

terrain representations is investigated.      
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(2)  Global-local orthogonal mapping (GLO-Map) [4 – 6]:   These algorithms are currently in the form of 

efficient, multiresolution-based algorithms that employ smooth orthogonal functions over 2-D domains.   

 
This paper describes both classes of multiresolution-based methods, and representative 3-D terrain 

representations are provided for complex urban environments.  Examples are presented using simulated 

LIDAR and/or vision data from a virtual environment as well as using processed LIDAR from UAV data 

collection experiments.   

 

II. Adaptive Mathematical Learning Algorithms 
 

Mathematical learning algorithms, which have been developed and implemented in previous work [1 – 

3], can be employed to generate an adaptive, multiresolution-based terrain map. The use of adaptive 

multiresolution greatly reduced the number of basis functions required in the terrain representation, 

increasing computational speed and efficiency. The algorithm is adaptive in that the terrain representation 

is locally updated as new data are collected, which leads to fast, real-time implementations.   

 

 

Figure 1:  Adaptive Partitioning of a 2-D Domain. 

 
Figure 1 illustrates the adaptive partitioning of a two-dimensional domain.  The adaptive learning algorithm 

approximates the terrain in terms of piecewise-constant (multiresolution) functions that are supported over 

each rectangular subdomain: 

 

where Iχ  denotes the characteristic (constant) function over subdomain I, and the coefficient Ic  is 

computed as the average height of all points that are in the subdomain I.  It should be noted that other 

statistics can be used to define the value of these coefficients.  The decision to subdivide a subdomain I into 

4 higher-resolution subdomains is based on the variance of the data within the subdomain I:  

 

 

That is, if the variance exceeds a specified threshold, the subdomain is divided to achieve higher resolution.  

If the variance is low and does not exceed the threshold, higher resolution does not provide a significant 

benefit and the subdomain is not divided. 

 
Figure 2 presents a sample point cloud and images obtained from simulated LIDAR and vision sensors 

within a virtual urban environment.  This point cloud was used to generate several terrain representations, 

as shown in Figures 3 and 4, by varying different parameters in the adaptive learning process.  In this 
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implementation, a two-dimensional (north-east) domain is subdivided into rectangular regions, and the 

terrain height is approximated by a constant function over each region.  Regions are locally subdivided into 

smaller regions based on new point cloud data.  If the point cloud data that reside in a specific region show 

significant variance in the z-direction (height), the algorithm divides the region into 4 subregions and 

approximates the terrain in each subregion as a constant function.  The overall adaptive learning process 

results in a multiresolution-based terrain representation in terms of piecewise-constant functions.  

      

 
Figure 2:  Simulated LIDAR Point Cloud and Images from the Virtual Urban Environment. 

 

 

 

Figure 3:  Multiresolution Terrain Representation using the Adaptive Learning Algorithm. 

 

 

 

 

(a) Level 7 Resolution (b) Level 8 Resolution 

Figure 4:  Adaptive Terrain Maps using Different Resolution Levels. 
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During the simulations, the vehicle with sensors was translated through an urban canyon.  The terrain 

representations in Figures 3 and 4 show that the LIDAR-based terrain representations capture the sides of 

several buildings in the canyon as well as the tops of several trees that are in the middle of the canyon, 

below the flight path.  Figure 4 shows the effect of increasing the maximum resolution level by a factor of 

two.  The Level 8 representation clearly provides higher resolution and more detail, but it also increases the 

number of basis functions from 1942 to 3940.    

These adaptive learning algorithms were then extended by the authors to provide three-dimensional 

terrain representations.  The three-dimensional algorithm required extending the adaptive two-dimensional 

subdivision algorithm (see Error! Reference source not found.), which resembles a multiresolution 

quadtree representation, to the adaptive partitioning of a three-dimensional domain, resembling a 

multiresolution octree representation.  Therefore, an overall three-dimensional domain is defined and then 

adaptively partitioned into subdomains that resemble cubes or rectangular prisms.  

A significant difference in the three-dimensional terrain algorithm compared to the two-dimensional 

implementation is that the terrain representation over each cubic subdomain is now a binary function; that 

is, each subdomain is marked as occupied or unoccupied based on the point cloud data.  In contrast, the 

two-dimensional implementation employs piecewise-constant basis functions, so that each subregion has a 

corresponding height.  In the three-dimensional algorithm, the decision to subdivide a given cubic region 

into 8 subregions is based on the number of 3-D points that are within that region.  In the current 

implementation, once the number of points in a cubic region exceeds a specified threshold 
SN , that region 

is partitioned into 8 subregions.  A subregion is marked as occupied if the number of points within that 

region exceed a specified number 
PN .  In other words, a subregion is considered open (i.e., obstacle free) 

if there are not at least 
PN  sensed 3-D points within that region.  Suitable choices for the parameters 

PN  

and 
PN  were investigated under different conditions.  

 

 

 

 

 

 

 

(a) 3-D Adaptive Terrain Representation (b) Image of Virtual Environment 

Figure 5:  Terrain Representation of a Virtual Urban Environment using 3-D Adaptive Learning. 
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Figures 5 and 6 present examples of three-dimensional terrain representations of the scene depicted in 

Figure 2.  These representations are in terms of occupied rectangular prisms at different resolution levels, 

with color variation to denote the maximum height of each occupied region.  One can see that the urban 

canyon is represented at higher resolution and some of the adjacent buildings are represented by larger 

subregions.  The terrain representation in Figures 5 and 6 differ in terms of the maximum allowable 

resolution employed.  It should be emphasized that, as in the two-dimensional algorithm, the three-

dimensional terrain implementation is recursive (locally modified as new point cloud data are sensed and 

processed) and suitable for real-time application.   

 

 

 

 

 

 

Figure 6:  Terrain Representation using 3-D Adaptive Learning (two different views). 

 

III. 3-D Terrain Results from Flight Data 

 
3-D terrain representations were generated from sensor data acquired during UAV data collection flights 

through an obstacle environment designed to resemble an urban canyon.  The UAV and environment are 

shown in Figure 7.  An inertial 3-D point cloud was computed from the LIDAR data collected during the 

flight.   The point cloud computation required using the measured position and attitude of the UAV, as well 

as the fixed orientation of the LIDAR with respect to the UAV (set to a 20° downward pitch angle), to map 

the LIDAR data into an inertial reference frame.  A representative point cloud from one of the test flights 

is illustrated in Figure 8.  For clarity of presentation, the figure only shows points within the obstacle 

environment that are at an altitude of 3 ft AGL or higher.  Therefore, most ground points are not shown, 

and most of the points correspond to the various obstacles within the scene.  
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Figure 7:  UAV and Obstacle Environment. 

 

 
Figure 8: Inertial 3-D Point Cloud from Flight LIDAR Data. 

 
Figures 9 – 12 depict 3-D terrain representations that were computed at different lateral resolution 

levels, ranging from Level 5 to Level 8.  The resolution levels are dyadic, so Level 5 corresponds to dividing 

the lateral domain into a 32 x 32 array of lateral subregions, Level 6 corresponds to a 64 x 64 array, Level 

7 corresponds to a 128 x 128 array, and Level 8 yields a 256 x 256 array.  Note that the mapping is performed 

over a 128 x 128 ft2 domain, so the physical sizes of each subregion in the Level 5 – 8 resolutions correspond 

to 4 x 4 ft2, 2 x 2 ft2, 1 x 1 ft2, and 0.5 x 0.5 ft2, respectively.  In all cases, a fixed number of vertical regions 

was selected at a resolution of 1 ft in the vertical direction.  The UAV flight path is shown in red in each 

figure, showing that the vehicle was flown through the urban canyon at an altitude that was slightly higher 

than the tallest obstacles (about 10 ft).  As expected, the figures show that increased resolution provides 

more detail in the terrain representations. 
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Figure 9:  3-D Terrain Representation – Level 5 Resolution. 

 
Figure 10:  3-D Terrain Representation – Level 6 Resolution. 

 
Figure 11:  3-D Terrain Representation – Level 7 Resolution. 
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Figure 12:  3-D Terrain Representation – Level 8 Resolution. 

 
Figure 13 provides an example of adaptive multiresolution.  In this case, the lateral domain was 

originally divided into a 32 x 32 array of regions (i.e., Level 5 resolution) and 10 vertical regions.  The 

lateral regions were then subdivided based on the point cloud data, with a maximum allowable resolution 

level of 8.  The resulting terrain representation is in terms of 26,520 occupied cells.  In general, this 

multiresolution example and the terrains generated at uniform resolution provide reasonable 

approximations of the environment from which the individual obstacles can be identified.  It is also evident, 

however, that mainly due to errors in the 3-D point cloud, individual obstacles in the terrain map are 

rendered larger than their actual size (i.e., the point cloud is spread out).  For example, the opening under 

the square arch is not identified in the terrain representations.  This is most likely due to inaccuracies in the 

inertial point cloud resulting from errors in the Pixhawk navigation data and time synchronization errors 

between the Pixhawk and LIDAR data logging.  

 
Figure 13:  Multiresolution 3-D Terrain Representation. 
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As an example application of this work, the terrain representations were used to provide obstacle 

constraints to a path planning algorithm.  The path planning algorithm required a simplified obstacle map 

that identifies the centroids and radii of distinct obstacles.  To satisfy this requirement, a 2-D terrain map 

was first generated using the adaptive learning algorithm over a 2-D domain.  A representative example 

terrain map from the flight data is shown in Figure 14.  This representation was then thresholded by terrain 

height, which yields a binary representation that identifies areas that are occupied by obstacles, as shown 

in Figure 15a.  A clustering algorithm was then applied to the binary map in order to group occupied cells 

in the binary map into distinct obstacles.  Finally, the centroid of each obstacle cluster was computed and 

the radius of each obstacle is determined as the maximum distance from the cluster centroid to any point in 

the cluster, which is an intentionally conservative estimate. Figure 15b depicts the obstacle map 

corresponding to the terrain map shown in Figure 14.   

 

 
Figure 14:  2-D Terrain Map Generated from LIDAR Data. 
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(a) Binary Terrain Map (b) Obstacle Map 

Figure 15:  Obstacle Mapping for Path Planning Application 

 

 

IV. Global-Local Orthogonal Mapping (GLO-Map) 

 
Previous work in multiresolution functional representations of point cloud data [4 - 5] is currently being 

extended to consider 3-D terrain representations.  The multiresolution properties of current algorithms have 

led to broad and useful approximation approaches in numerous problems. The Global-Local Orthogonal 

Mapping (GLO-Map) method [6] uses an orthogonal weighting function technique, as illustrated in Figure 

16, that produces a global family of overlapping preliminary approximation methods whose centroids lie 

on the vertices (i.e., the data from the point cloud).  Figure 17 shows an example of generating a point cloud 

from stereo vision images of a spacecraft, and the resulting functional representation from GLO-Map. The 

functional representations are being investigated due to their reduced requirement on memory, and rigorous 

comparison methods.  
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Figure 16:  GLO-Map Algorithm with Weighted Orthogonal Basis Functions. 
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(a) Point Cloud (b) Functional Representation 

Figure 17:  Stereo Vision and Functional Representations of a Satellite. 

Since the weighting function generates a global family of overlapping preliminary approximations, 

these naturally local models are defined independently of each other with the choice of any classical basis 

functions (using a priori data). An averaging method ensures that the final approximations are globally 

piecewise continuous. The global/local approach to mapping makes sense because sensors, in particular 

vision-based sensors, may fail over water or near mirror-like buildings. As such, the local approximations 

would be a much more attractive basis for local analysis, such as path planning. 

Currently, a batch GLO-Map code is operational and has been tested against relevant data sets to 

quantify the efficiency and accuracy.  Future work includes expansion to a sequential algorithm, which 

does not require re-running the code when new data is provided.  The extension of the algorithm to non-

functional spaces, such as under a bridge or overhang, is currently under investigation.  One potential 

method is to mesh B-spline functions on top of the global/local map that can handle multi-valued functional 

representations 

V.  Conclusion 

 This paper has investigated the development of 3-D terrain mapping algorithms suitable for the 

representation of complex 3-D environments such as an urban canyon.  Two classes of multiresolution-

based algorithms were considered in this research:  adaptive mathematical learning algorithms and global-

orthogonal mapping (GLO-Map).  Representative terrain mapping examples were presented using 

simulated LIDAR data from a virtual urban environment as well as processed 3-D LIDAR data collected 

from a UAV flying through a representative obstacle environment.    
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